
OPTIMIZATION of PATH in MOBILE
ROBOTS USING PRM ALGORITHM

Sakshi Arali, Rutvik Deshpande, Vedant Pagar, Roshan Waghchaure, Sanjay Narayankar
Student,Mechanical, PCCOE&R, India
Student,Mechanical, PCCOE&R, India
Student,Mechanical, PCCOE&R, India
Student,Mechanical, PCCOE&R, India

Assistant Professor,Mechanical,PCCOE&R, India
E-mail:sakshi06092001@gmail.com, vedantpagar5@gmail.com , , rutvikdeshpande22@gmail.com, roshanwaghchaure98@gmail.com ,

sanjay.narayankar@pccoer.in

Abstract - In the current study of mobile robots, the path planning
algorithm and optimization in both static and dynamic situations are
the key issues that are being addressed. Path planning can be used to
resolve a wide range of issues in a variety of industries. It can direct the
robot to arrive at a specific location or destination using very basic
trajectory planning to the choice of an appropriate series of actions.
The focus of this project is on the algorithms that are used to optimize
the path of a mobile robot using MATLAB and other important
resources. For static known obstacles, the A* and D* algorithms are
described with a suitable justification and mathematical relationships.
The PRM (probabilistic roadmap) technique is also covered in this.
This algorithm creates a network graph of potential paths in a given
map based on free and occupied regions. The robot is initially placed in
an area with static known obstacles, and is then assigned to a start and
target point. Additionally, waypoints generated by MATLAB are used
to provide the robot with instructions so that it can navigate and follow
an optimized course while avoiding potential hazards. With regard to
time, obstacles, and distance, the optimal path is. Typically, Arduino is
used to combine hardware components into software programmes, but
in this project, we utilized MATLAB for better computation because it
provides accurate optimized paths that are integrated with ESP. As a
result, there are fewer hardware and software components, which
decreases computing time.

Keywords: Machine learning, algorithm, PRM, Optimized
path, MATLAB, Integration, known static obstacles,
differential drive robot, waypoints

I. INTRODUCTION

Making the best or most efficient use of a circumstance or
resource is the definition of optimisation in its literal sense.
In a number of sectors, including manufacturing, healthcare,
transportation, and agriculture, mobile robots are becoming
more and more prevalent. However, it can be challenging to
optimize the path planning and navigation of mobile robots.
Traditional path planning methods usually require a lot of
physical labour and can be time-consuming. To overcome
these challenges,researchers are examining how machine
learning (ML) and artificial intelligence (AI) could be
applied to enhance the path planning of mobile robots.
By merging AI and ML with mobile robots, it is possible

for mobile robots to learn from their surroundings, adapt to
changing conditions, and make decisions in real-time based
on the data they collect. Path planning that takes advantage
of AI and ML algorithms may find the fastest route, avoid

obstacles, and use less energy. These algorithms may take
into account a wide range of variables, including the layout
of the environment, the robot’s speed, and the available
sensors. The benefits of using AI and machine learning to
path planning for mobile robots are significant. By
maximising path planning, mobile robots can boost safety,
decrease expenses, and increase production.

In general, path optimisation in mobile robots is required
to boost productivity, guarantee safety, effectively manage
resources, meet time sensitive requirements, navigate
complicated settings, and enable coordination in multi-robot
systems. It is essential for enhancing the capabilities and
effectiveness of mobile robots in a variety of applications.

A. Reasons why Path Optimization is Required in Mobile
Robots-
Effectiveness, Collision-avoidance, Allocating resources,

Complex environments, Multi-robot coordination,
Optimization problem.

II. MAIN PROBLEMS & OBJECTIVES

● Since robots are never able to decide between
which is the longest or shortest route, we analyse
their beginning place and navigation to the end
destination.

● Working on selection of elements that must be
taken into account for the path to be ideal.

Fig.1. Difficulty with path planning and avoiding obstacles

1

mailto:sakshi06092001@gmail.com
mailto:vedantpagar5@gmail.com
mailto:rutvikdeshpande22@gmail.com
mailto:roshanwaghchaure98@gmail.com
mailto:sanjay.narayankar@pccoer.in


Objectives-
● Mapping the environment into arrays to provide

MR a better understanding of where it is in relation
to its target.

● Pathfinding algorithm selection based on the
shortest trip distance and time between the starting
point and the destination.

● Making Robot Travel along the best route possible
by using several PID controllers.

III. PATH PLANNING BY ALGORITHMS AND MATLAB

The process of choosing an ideal or practical route for a
robot to go from its current location to a desired objective
location in its surroundings is
referred to as path planning in the field of robotics. It entails
assessing the robot’s environment, taking into account
barriers and limitations, and creating a trajectory or series of
moves that the robot should do in order to get where it’s
going.

For autonomous robots to move autonomously in
changing and uncharted situations, path planning is
crucial.The properties of the environment, robot kinematics,
impediments, and dynamic limitations are all taken into
account by path planning algorithms. Based on the
particular demands of the robot’s task and application, they
seek to strike a balance between effectiveness, safety and
optimality.

A. Concepts to be considered in the path planning process:
1) Perception: Using sensors the robot senses its

surroundings in order to learn about barriers, the
terrain, or other important elements.
2) Environment modelling: A representation or model of

the robot’s environment is created using the perceived data.
Techniques like occupancy grids, point clouds, or feature
maps can be used for this.
3) Path generation: A number of algorithms are used to

create a path or trajectory for the robot using the
environment model. These algorithms might be as basic as
potential fields or bug algorithms or as complex as A*
(A-star), Dijkstra’s algorithm, or Rapidly Exploring
Random Trees (RRT).
4) Path length, safety, smoothness, and energy economy

are some of the parameters used to analyse and optimize the
created path. The path can be improved and refined as
needed by using optimisation strategies.
5) Execution and control: By directing its actuators, such

as wheels or joints, to follow the desired trajectory, the robot
executes the planned
path. To monitor the robot’s actual position and make
modifications as necessary, sensors provide feedback.

B. Key factors for path planning-
1) Type:

i) Global planning, for example, assumes that all
environmental data is known. So, before the robot travels,
the full course is plotted.

ii) Local planning, sometimes referred to as
sensor-based planning, is the use of sensors by a robot to
gather data when the data is either unknown or only
partially understood. The robot is moving as the course is
being carefully planned.
2) Time:

i) Online: Using data from the robot’s sensors, the
path from the start to the goal points is planned during the
robot’s movement.

ii) Off-line: Before the robot moves, the entire course
is planned.

3)Environment:
i) dynamic environment means that there are both

stationary and
moving obstacles around the robot.

ii) Static Environment: The only barriers in the robot’s
environment are static.(an acknowledged static
setting/unknown static configuration.)

Based on the results of the aforementioned investigation,
the following approach was adopted to plan the robot’s
route:

● Time dependable,
● internet, and the type of plan- Local.
● Environmentally speaking: Static Barrier.
● Obstacle Type: Known or Unknown Static

Fig. 2 . Path planning approach

Fig.3. Difference between global and local path planning

2



C. Algorithm Study-
The two primary algorithm techniques were the focus of

the algorithm study.

1) Classical Approach: In the context of robotic route
planning, the term ”classical approach”
refers to established, conventional techniques for creating
paths. The following are some significant old algorithms:

i) Dijkstra’s algorithm: This calculates the shortest route
from the beginning node to every subsequent node by
iteratively navigating the graph.

ii) A* (A-star) algorithm: It is an extension of Dijkstra’s
algorithm and uses heuristics to more effectively direct the
search towards the objective. It incorporates the projected
cost from the beginning node to a node (g-cost) as well as
the cost of travelling from that node to the target (h-cost).

iii) Rapidly-exploring Random Trees (RRT): They are a
frequently employed probabilistically complete approach for
path planning in high dimensional domains.

iv) Probabilistic Roadmap (PRM): It works by selecting
valid configurations at random and connecting them along
collision-free lines, it includes creating a map of the
environment. Path planning is done by locating a path inside
the roadmap using graph search algorithms like Dijkstra’s or
A*.

2)Heuristic Approach: Heuristic techniques use heuristics
or approximated measures to direct the search for an ideal or
workable path in the context of path planning in robotics.
These algorithms try to find a decent compromise between
finding solutions quickly and being computationally
efficient.

i) Theta* algorithm: Theta* is an enhancement of the
A* method that increases path smoothness by taking
neighbouring node visibility into account. Theta* looks for
line-of-sight visibility between nodes rather than traversing
the full grid.

ii) D* (D-Star) algorithm: The D* method is made for
dynamic contexts where the configuration of the map or
obstacles can vary while the algorithm is being executed.
When the environment changes, it incrementally updates the
path.

iii) Genetic Algorithms: Inspired by evolutionary ideas,
genetic algorithms (GAs) employ a population-based
strategy to look for the best
pathways. Chromosomes are used to represent paths, and
genetic operators such as crossover and mutation are used to
create new paths.

D. PRM Algorithm Applied-
Robotics motion planning algorithms like the

Probabilistic Roadmap (PRM) algorithm are used to plan a
robot’s movement inside a specific environment.The PRM
algorithm creates a roadmap of the environment, which is a
graph with nodes that stand in for legitimate robot
configurations and edges that stand in for practical routes

connecting them. Construction and search are the two
fundamental components of the PRM algorithm. The
programme generates a collection of random robot
configurations in the environment and determines if they are
collision free during the construction phase. A configuration
becomes a node on the roadmap if it is collision-free. A
configuration becomes a node on the roadmap if it is
collision-free. The programme then creates edges
connecting the roadmap’s nodes, which represent viable
routes between them. This procedure is carried out again
and again until the roadmap has enough nodes and edges.
The PRM algorithm searches the roadmap during the search
phase to identify a route between the starting configuration
and the desired robot configuration. An established graph
search algorithm, such as A* search, is used to do this. The
algorithm looks for a route that connects the starting
configuration and the desired configuration while avoiding
environmental impediments. If a path is discovered, the
robot can advance from the starting configuration to the goal
configuration by following it. A popular path planning
approach called Probabilistic Roadmap (PRM) builds a
roadmap of the surrounding area to quickly identify viable
paths.

E. Description of the PRM Algorithm’s Operation-
1) Initialization:
•In the workspace, create a number of randomly sampled

configurations (called nodes). These setups must to be
reliable and devoid of collisions.
•Check for collision-free pathways between close
configurations to connect them.The roadmap’s edges are
produced by these connections.
•Creating the road map.

2) For every set configuration:
•Choose a portion of the neighbouring configurations.
•Between the current configuration and its neighbours, look
for collision free pathways.
•Add an edge to the roadmap connecting the current
configuration with its neighbours if there is a collision-free
path.

3) Improving connections:
•Make further attempts at connecting configurations that
weren’t initially connected. As a result, the roadmap’s
connectedness is enhanced and a wider range of paths are
covered.

4) Phase of query:
•Check to see if the start and goal configurations are
included in the roadmap when given a start configuration
and a goal configuration. If not, locate the roadmap
configurations that are closest to the start and objective and
add them.
•Use a path planning algorithm to determine the shortest
route between the roadmap’s start and goal settings (for
example, Dijkstra’s algorithm or A*). A series of roadmap
layouts joined by edges make up this journey.

3



5) Smoothing the path:
•Apply a route smoothing technique to the path to enhance it
and make it more efficient or natural after getting the path
from the roadmap.
• This may entail eliminating pointless waypoints, using
optimisation methods to reduce path length, or enhance
other criteria.

6) Execution of the path:
•Use motion control methods to direct the robot down the
straight path.
• To precisely follow the course, this may need organising
and carrying out small motions, such as straight-line
segments or manoeuvres around obstructions.

Fig.4. Working of PRM algorithm

By sampling several configurations and creating a
roadmap that reflects the connection of the surrounding
environment, the PRM algorithm efficiently explores the
configuration space. The algorithm decreases the
computational work necessary during query time by
computing the roadmap in advance.

As a result, PRM is especially advantageous in scenarios
involving complicated surroundings, high-dimensional
configuration spaces, or dynamic environments where quick
planning is required. The quality and density of the sampled
configurations, as well as the roadmap’s connection, all
affect PRM’s effectiveness. The effectiveness and calibre of
the created pathways can be affected by changing
parameters like the amount of samples or connection radius.
Numerous robotic applications, such as autonomous
vehicles, industrial automation, and humanoid robots, have
successfully exploited the PRM algorithm.

F. Creation of Maze/surrounding in MATLAB:
● Construct a scenario to represent a moving robot

moving around a space. The example shows how to
generate a scenario, model a robot platform using a
rigid body tree object, extract a binary occupancy
grid map from the scenario, and use the
mobileRobotPRM route planning algorithm to plan
a path for the mobile robot to follow.

● A machinePlatforms that can move and a collection
of stationary obstacles make up the scenario object.
The mobile robot in the scenario can be modelled
using the robotPlatform object. In this example, a
ground plane and box meshes are used to construct
a room.

● The room’s walls are created as box meshes. The
binary occupancy map used for path planning
includes these barriers since the static meshes are
inserted with the IsBinaryOccupied value set to
true.

● For path planning, get an occupancy map as a
binaryOccupancyMap object from the scenario.
The occupied areas on the map should be 0.3
metres larger.

Fig. 5. Creation of maze and inputs for static obstacle with visualization
of maze

G. Path Planning in MATLAB
In the context of robotics, the term ”surrounding”

typically refers to the environment or the immediate
surroundings of a robot. It encompasses the physical space
in which the robot operates, including objects, obstacles,
terrain, and other elements that are present in its

4



vicinity.Understanding and perceiving the surrounding
environment is crucial for a robot to perform tasks
effectively and navigate safely.

To perceive the surrounding environment, robots often
employ a combination of sensors such as cameras, LIDAR
(Light Detection and Ranging), ultrasonic sensors, infrared
sensors, and others. These sensors provide the robot with
information about the surrounding objects, their positions,
distances, shapes, and other relevant features.By analyzing
the data from these sensors, the robot’s perception system
can create a representation of the surrounding environment,
commonly referred to as a ”map” or a ”scene.” This
representation allows the robot to make informed decisions,
plan its actions, and interact with the objects or navigate
through the environment.

For example, a robot in a warehouse might use its sensors
to detect and avoid obstacles, locate specific items, or
navigate around a complex layout of shelves and
pallets.Overall, path planning plays a crucial role in
enabling robots to autonomously navigate their
environment, avoid obstacles, and reach their desired
destinations efficiently and safely.

1) Steps in MATLAB:
● Find a path between the start and goal coordinates

on the acquired map using the mobileRobotPRM
path planner.

● Set the mobile robot’s start and end locations.
● With the binary occupancy map and the maximum

number of nodes, create a mobileRobotPRM
object. The maximum distance between the two
connected nodes should be specified.

● Set the rng speed for repeatability.
● Identify a route that connects the start and goal

positions.
● Use the waypointTrajectory System object to create

a trajectory for the mobile robot to follow,
complete with waypoints from the intended route.

● Load the Clearpath Husky mobile robot as a
rigidBodyTree object from the robot library.

● Build a robotPlatform object containing a waypoint
for the robot’s trajectory and a rigidBodyTree
object for the robot’s modelSystem of Trajectories
object.

● Imagine the situation involving the robot.
● Imagine the intended course.
● Make the simulation ready. Simply step through

the simulation and update the visualisation at each
step as the robot’s positions are all known in
advance.

● Reset the simulation in the scenario to run it one
more and see the results.

By this method we were able to create the maze and the
robot was able to find the optimised via. waypoints.

Fig. 6. Illustration of working of code

2) Libraries used in MATLAB:
● Robotics System Toolbox: This toolbox includes

features for creating, modelling, and operating
robotic systems. It contains algorithms for motion
planning, perception, and robot dynamics.
Additionally, it permits tethering to widely used
robot hardware platforms.

● Robotics Toolbox for MATLAB (Peter Corke’s
Toolbox): This is a well-liked MATLAB toolbox
for study and instruction in robotics. It provides
kinematics, dynamics, trajectory generation, and
visualisation features for robots. Additionally, it
supports a variety of mobile robots and
manipulators as well as multiple robot models.

● BinaryOccupancyMap: Robotics System Toolbox’s
”BinaryOccupancyMap” class is available in
MATLAB. It represents a grid map of 2D
occupancy where each cell can either be occupied
(1) or empty (0). In robotics, it is frequently used
for path planning, obstacle representation, and
environment modelling.

● mobileRobotPRM: For the environment map
supplied in the Map property, the
mobileRobotPRM object serves as a roadmap path
planner object. A roadmap, which is a network
graph of potential routes in the map based on free
and occupied places, is created by the object using
the map. In order to identify an unobstructed route
from one point to another, you can adjust the
ConnectionDistance and NumNodes parameters to
reflect the complexity of the map.

5



● WayPointTrajectory: The”waypointTrajectory”
class from the Robotics System Toolbox is
available in MATLAB. It represents a trajectory in
a 2D or 3D space that is determined by a series of
waypoints.In robotics applications, it is frequently
used for path planning, motion planning, and
trajectory generating.

● rigidBodyTree: The ”rigidBodyTree” class from
the Robotics System Toolbox is available in
MATLAB. For modelling and simulating robotic
systems, it represents a tree structure of connected
rigid bodies.

You can provide the kinematic structure, joint types, joint
limitations, and other characteristics of the robot using the
rigidBodyTree class.

H. Differential Drive Robot Principle:
The movement of a differential drive robot is controlled

by two different wheels or sets of wheels. Due to the
autonomous driving of each wheel, the robot may turn and
move in different directions.The robot may move in a
variety of ways by changing the wheel’s speeds and
directions. For instance, both wheels must rotate at the same
speed and in the same direction in order to drive forward.

Fig. 7. Illustration of differential drive robot principle.

The wheels rotate in opposite directions or at different
speeds to turn the robot, which pivots about a central
axis.Due to its simplicity and manoeuvrability, differential
drive robots are frequently utilised in applications including
robotics contests, mobile robots, and tiny vehicles. Different
techniques, such as manual input, sensor feedback, or
self-running algorithms, can be used to control them. Some
of the crucial calculations pertaining to the principle are
listed
below:
1) Wheel Speed:
Speed of each wheel: (Robot Speed * 2) / Wheel
Diameter.In this case, ”robot speed” stands for the intended
speed of the robot, and ”wheel diameter” refers to the size
of the wheels.
2) Wheelbase: The wheelbase of a robot is the separation
between its two wheels. It is essential for figuring out the
robot’s manoeuvrability and turning radius where,
turning radius = (wheelbase/2)
3) Angular Velocity: (2 * robot speed) / wheelbase
4) Arc Length:arc length = radius * angle.

Here, ”radius” refers to the robot’s turning radius and
”angle” to the angle at which it turned.
5) Odometry: Based on the robot’s wheel motions, odometry
calculates the robot’s position and orientation. You can use
the following equations to determine the change in position:
delta x = (left wheel distance + right wheel distance) / 2 *
cos(theta)
delta y = (left wheel distance + right wheel distance) / 2 *
sin(theta)
delta theta = (right wheel distance - left wheel distance) /
wheelbase
To achieve desired behaviours or activities, further
calculations may be required, depending on the particular
requirements and control algorithms.

Fig. 8. Mathematical model of trajectory path

I. Components Used:

1) A 60RPM DC motor with gears
2) A caster wheel
3) 70X40 White Double Wheel 2
4) ESP8266-32 - The ESP8266-32 is a microcontroller
module built on Espressif Systems’ ESP32
system-on-a-chip (SoC).C++, MicroPython, and the
Arduino IDE are just a few of the programming languages
that can be used to create programmes for the ESP8266-32
module.
5) 13A DC MOTOR DRIVER
6) BATTERY, 3.7V
7) 3 CELL BATTERY HOLDER (4)
8)PINWIRE
9) ROCKER SWITCH IRON 2

J. Algorithm Validation:
The start and goal locations on this test case’s simple

square map are on two opposing corners, hence the diagonal
is the only feasible way. However, the path appears to be
slightly bent, therefore we must now adjust our algorithm to
choose the best possible route. We just adjusted the number
of nodes from 2500 to 10000, and the output shows that we

6



have improved the perfect path.Adjust the Nodes’
NumberThe number of nodes, or points, that are placed on
the map and used by the algorithm to produce a roadmap is
specified by NumNodes. The method connects all places
that do not have obstructions in the straight path between
them using the ConnectionDistance attribute as a criterion
for distance.The efficiency of the path can be improved by
adding additional nodes by providing more viable routes.
The intricacy, however, lengthens processing time. You
might need a lot of nodes to have adequate map coverage.
Some regions of the map might not have enough nodes to
connect to the rest of the map because of the nodes’
haphazard placement. In this illustration, you create a mix of
many and few nodes in a roadmap Algorithm verification
using a single barrierSince our algorithm has been
improved, we can now verify it for a straightforward
obstacle between the maps. Here is the straightforward map
that we used for the test, complete with a single barrier.

Now that the algorithm has been fine-tuned, we can use it
to navigate increasingly complicated mazes because it is
capable of quickly determining the best route across the
gaps. The start and destination locations are now 1, 1, and 2,
and we will now determine the ideal path points between
this difficult path and those between it.

Fig. 9. Maze is created

Fig.10. Final waypoints and optimized path given by algorithm for maze
with two obstacles.

K. Robot Validation:
Tracking the physical robot’s movement and comparing
it to the path predicted by the MATLAB simulations
allowed us to thoroughly examine the robot throughout
the robot validation phase. Our goal was to verify that
the real robot’s trajectory closely mirrored the
simulation’s progression.Through careful observation
and data collecting, we discovered that the robot
consistently followed a route that matched the path
suggested by MATLAB simulations. This verification
process verified the accuracy and dependability of our
algorithm as well as its successful use for real-world
robotic mobility.Our method’s effectiveness in carrying
out the necessary path planning and control is
demonstrated by how well the path taken by the actual
robot lines up with the MATLAB-simulated path. Our
robotic system’s dependability and performance are
verified through this certification process.

7



L. Working of Model:

Fig. 11. Flowchart of working of robot in actual.

Fig.12. Schematic wire diagram of robot

Fig. 13. Top view of actual robot.

M. Results
We first thoroughly assessed our algorithm while

considering fundamental conditions. We found several
problems with the path created throughout this operation.
We then adjusted our algorithm to overcome these
problems, leading to the creation of an ideal path. We
carried out multiple test cases incorporating obstacles and
various environmental factors to confirm the efficacy of our
system. Every time, we were successful in finding the best
course of action.

During the robot validation step, we followed the robot’s
path to make sure it matched the path discovered during the
algorithm testing. Surprisingly,we discovered that the robot
continually took the same optimal path, demonstrating the
precision and dependability of our system.

Fig.14. Case1- Maze with no obstacles

Fig. 15. Actual Result of Case1.

Fig. 16. Case2- Maze with known static obstacles.
(Blue points- obstacles, Pink- waypoints)

8



Fig.17. Actual Result of Case2.

IV. CONCLUSION

For MATLAB case1 - Based on the information provided,
we were able to obtain the optimal path between two
diagonal points. Initially, there was a slight deviation in the
path taken by the robot. However, after tuning the angle
settings in the ESP code, the robot was able to trace the
optimal path accurately. Overall, the conclusion drawn is
that by fine-tuning the angle settings in the ESP code, the
robot’s movement was improved, and it successfully
followed the optimal path.
For MATLAB case2 - Based on the information

provided,more complexity was added to the scenario,
specifically involving multiple waypoints.The challenge
was to ensure that the robot correctly followed all the
waypoints in order to reach the goal point. In this case, the
robot successfully followed 7 waypoints using the optimal
path obtained in MATLAB.

This conclusion highlights the successful navigation of
the robot through a more complex scenario. By
incorporating multiple waypoints into the robot’s path
planning algorithm, the robot was able to follow the optimal
path generated in MATLAB. It successfully visited all 7
waypoints in the correct order, ultimately reaching the goal
point. The ability of the robot to accurately navigate through
a series of waypoints demonstrates the effectiveness of the
path planning algorithm and the implementation of the
optimal path obtained from MATLAB.It indicates that the
robot’s control system and navigation capabilities were
capable of handling the added complexity and accurately
following the desired trajectory.

ACKNOWLEDGMENT

REFERENCES

[1] Changgeng Li , Xia Huang * , Jun Ding , Kun Song , Shiqing Lu,
2022 “Global path planning based on a bidirectional alternating
search A* algorithm for mobile robots”

[2] Bing Fu, Lin Chen, Yuntao Zhou, Dong Zheng, Zhiqi Wei, Jun Dai,
Haihong Pan, 2018
“An improved A* algorithm for the industrial robot path planning
with high success rate and short length”

[3] Mohd Nadhir Ab Wahab , Samia Nefti-Meziani , Adham Atyabi,
2020 “A comparative review on mobile robot path planning:
Classical or meta-heuristic methods?”

[4] B.K. Patle , Ganesh Babu L , Anish Pandey , D.R.K. Parhi , A.
Jagadeesh “A review: On path planning strategies for navigation of
mobile robot”

[5] Mustafa Salah Abed, Omaar Farouq, Qusay F .Al-Doori, 2021
“A Review on Path Planning Algorithms for Mobile Robots”

[6] Mohd. Nayab Zafara,*, J. C. Mohantab, 2018
“Methodology for Path Planning and Optimization of Mobile
Robots: A Review”

[7] Tahseen Fadhel Abaas1 and Alaa Hassan Shabeeb1, 2020
“Path Planning Optimization of a Mobile Robot based on Intelligence
Algorithm”

[8] HyeokSoo Lee and Jongpil Jeong, 2021
“Mobile Robot Path Optimization Technique Based on Reinforcement
Learning Algorithm in Warehouse Environment”

[9] Ahmed Hussein, Heba Mostafa, Mohamed Badrel-din, Osama Sultan
and Alaa Khamis, 2012
“Metaheuristic Optimization Approach to Mobile Robot Path
Planning”

[10] Martha Nohemi Acosta Montalvol.2020.
“Introduction to Interfacing Arduino Hardware And MATLAB®-
Simulink®”

[11] Robins Mathew, Somashekhar S Hiremath, 2016
“Trajectory tracking and control of differential drive robot for
predefined regular geometrical path”

[12] Ayorkor Mills-Tettey, Vincent Lee-Shue Jr. Prasad Narendra
Atkar, Kevin Tantisevi

“Robotic Motion Planning: A* and D* Search”
[13] https://in.mathworks.com/help/robotics/ug/perform-pathplanning-
simulation-with-mobile-robot.html

[14] Jacqueline Jermyn , 2021
“A Comparison of the Effectiveness of the RRT, PRM and Novel
Hybrid RRT-PRM Path Planners”

9


